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THE METHOD OF R-FUNCTIONS IN COMPUTING FIELDS FOR BODIES WHOSE 
PHYSICAL CHARACTERISTICS HAVE FIRST-ORDER DISCONTINUITIES* 

V.L. RVACHEV and T,I. SRl?IKO 

A new method is given, recognising the contact conditions appearing in 
bodies composed of elements with different physical characteristics. 
The method is based on representing the solution structures by various 
analytic expressions in the corresponding subregions. Two types of contact 
conditions appearing in the problems of computing electric fields for the 
locally isotropic and anisotropic conductivitiesare considered. The Ritz 
method is used to obtain a solution, and numerical results are given. 

In considering the problems of thermal conductivity, electrostatics, and the theory of 
elasticity for bodies composed of elements with different physical characteristics, we find 
that additional conditions arise in addition to the usual boundary conditions at theboundary 
of the body, namely contact conditions within the region &2 (Fig. 1). The form of these 
conditions is determined by the physical formulation of the problem. Various types of contact 
conditions were considered in /l-5/; in all cases, however, after constructing the solution 
structure Y= E(Q), taking all boundary conditions at the outer boundary as-2 into account, 
the following transformation retaining the boundary BG was carried out: 

Q = (2' = z+ o* (~)a (I)) (I) 
21 = {Zil), s = (Zi), Q = (ai); i= 1, 2 

where o=O is the equation of the outer boundary and ci are functions chosen in a special 
manner depending on the form of the contact conditions. In practice, we must check every 
time whether the mapping of the transformation Q belongs to the region nfla. Additional 
difficulties are caused by the deformation of the spline mesh under the transformation Q, 
complicating the computations in quadratures. 

Below we present a different method of including the contact conditions, based on 
representing the solution structuresbydifferent analystic expressions in different subregions. 

Let us consider the equation 

div (ai grad U) = 0 (2) 

in a finite region P (Fig. 2) with a piecewise homogeneous inclusions and mixed typeboundary 
conditions 

and contact conditions 

(4) 

In this case we can represent the solution structure in the form 

Oi = B (a)+ b*&D,(')B (0)~ 4 = @o'A mi (5) 

where m. = 0 is the equation of the outer boundary, (D{= 0 are normalized equations of the 
boundary aQi of the subregions of G (we allow the exclusion of the segments belonging to 
an), bi are constants determined by the conditions (4), B(Q) is the structure of the solution 
taking into account the boundary conditions at the outer boundary 8Q[5]. From (5) it 
follows that the first condition of (4) is satisfied automatically by virtue of the fact that 
Oi=O on ani. To satisfy the second condition of (4) we continue aul&ai into the cor- 
responding subregions using the operators D, (0 iSI. Substituting (5) into (4), we obtain 

e*[&(')B (@,) + GiD,(')B (@)I = E~ID,(% (a) - s,o,% (@)I DEB = -o,o+f 
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and hence 

ei (1 + $) = ej (1 + hj)’ bi = Mei - 1 

a b 

Fig.1 Fig.2 

Since the ratio s&j is the only important factor in satisfying the contact conditions, 
it follows that we can impose additional constraints on the quantities 8k in the light of 
e.g. the results of numerical computations. In particular, we require that the following 
conditions be satisfied: 

-i<Mej- 1;92 1, 0 GM B 2iei 

-i<MMst- i<l,O<Md2/~ 

Thus the choice of 8{,6j will depend on the constraint 

0 <M <min (2/Q) (k = i, 2, .., K) 

The structure (5) is valid for arbitrary distribution of the subregions with different 
physical characteristics, although it can be simplified in certain special cases. For example, 
in the case of the distribution of subregions shown in Fig.l,a,bwecan write 

u1 = B ((o), u, = B (C’) + S&D, (*)B (Q) . uJ = B (Q) + 6s5,D~@k3((D) 

Problem (2)-(4) was solved for el= 1, e,= 100 and e,= 100, e,= 1, i.e. for large dif- 
ferences in the electrical conductivity. 

The undefined component @ appearing in the structure of solution /5/ was written in 
the form .a) = ClXlf E*X* + . + cl&l where Xk = Xk(Z, y) (k = i, 2, . t.1 n) is a system of coordinate 
functions complete in sl, iJ&. The unknown coefficients cK can be found using one of the 
variational or projection methods (the Ritz method is used here). To use the Ritz method, 
we pass to a boundary value problem with homogeneous boundary conditions and construct on the 
lineal of functions satisfying these conditions a functional, equivalent to the boundary 
value problem in question. Uaving proved the positive definiteness of the corresponding 
operator, we can apply the Ritz method, having also ensured the convergence in energy terms, 
to the exact solution. The passage to homogeneous boundary conditions is carried out by means 
of the substitution U= IL'+ ug where U* satisfies the boundary conditions (3). 

Thus we seek a solution in the region @ IJQ, of the following boundary value problem 
equivalent to (2)-(4): 
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Let us show the positive definiteness of the operator L on the lineal U. We have 

ac2 = x2, u m,, an, = anIn u anlH, an, = ansD u m,, 

Taking into account the homogeneous Dirichlet boundary conditions on the contour an,Q 
and aR,,, Neuman conditions on the contour aRIH,aCZH and contact conditions on acb,,, we 
obtain 

(Lu', u') = 8, i (~u>')?dR, +-PI 5 (vur')"G 
Q, a, 

for (cl V EJ > 0, and by virtue of the Friedrichs inequality, 141(I;v',u')>,~"~l~'l~~. 
We have used the cubic Schijnberg splines as the approximation functions (the order of the 

approximation space II= 670 corresponds to line a, and 1310 to line b in Fig. 3). The maximum 
normed error over the region does not exceed 1% (urn2 are exact solutions for E1 = i, Q = 100; 

El = 100, e* = 1). When the Chebyshev polynomials ( R= 45) and splines (n= 49) are used, the 
error amounts to 12%. Such poor accuracy is explained by the large difference in the sizes 
of the characteristic subregions. A sufficiently dense mesh of splines produces good results. 

Problem (Z)-(4) was also solved for the region shown in Fig. 4. Numerical computations 
were carried out using the same approximation techniques as in the previous problem. The 
results are shown by means of the level lines in Fig. 5 for $I = 1, e,= 100 (a) and E,= IOO,E~= 1 

(b). 
All ccnnputations were carried out using the automatic prograrmuing system for the diaital 

BESM-6 
of the 
ing to 
of the 

compuier, developed at the Engineering Problems Institute of the Academy of Sciences 
UKrSSR. The passage from the problem corresponding to Fig. 2 to the problem correspond- 
Fiq. 4 required changing four punched cards containing the information on the geometry 
region boundaries and the separation of the media. 

Fig. 3 Fig. 4 
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The contact conditions for the problem studied in /4/ have the form 

‘i IAQi;d = "j l8Q. 
71 +O 

b ’ 
5 

(7) 

Let us write the new version of the structure 
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w = 3 (tp) + is, f81D~%? (aq + %iTlf% (co)] 18) 

We have retained here the notation used in formula (5), we obtain the quantities xi 
and 8i from condition (7) as follows: 

and hence 

--N+Yi 
-ai%i+yi--aj%j+yj, xi=- xi = 

-N+yj 

ai ’ ‘j 
(- 1 <XI is it r&l (Y, -5al)<N=Gmin(yl+crl), 1=1,2,...,L) 

Formula (8) enables us to apply the proposed method to the solution of the class of 
problems described in /4/. 
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SYSTEM OF 
CRACKS* 

A closed solution of the problem of a periodic system of parallel pairs 
of collinear longitudinal shear cracks is obtained by the method of triple 
integral equations. The case of one crack of finite length in a band of 
periods was examined in /l-5/ for different states of stress, and of two 
semi-infinite cracks in /6,7/. The problem of two collinear cracks in an 
infinite medium was investigated in /8-l&'. 

Let an unlimited elastic plane rOy be weakened by a periodic system of slits @<IsIs 
b, I = f2n + i) d, n - 0, fl, 352 . . -. The relationships /12/ 

should be satisfied outside the slits., where u is the shear modulus, )D is the displacement 
along the 2 axis, and o,, and % are stress tensor components. We assume that the di-splace- 
ment and stress are periodic functions of the y with period 2d. Then the problem reduces 
to constructing the solution of 11) in the strip -d<t,<d that satisfies the boundarycondi- 
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